
1520-9210 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2018.2872898, IEEE
Transactions on Multimedia

binary 
code 

equivalent to the weights in dimension, the increase or de-
crease in value is considered as weighted hamming distance 
(WHD). Therefore, in the process of increasing the weighted 
hamming distance for NN search, each kind of dimension 
has different cases, rather than a simple 0/1 bit flip. So, we 
will discuss different situations separately. Specific steps are 
as follows: 

1) Resize the mask. The number of 1 in mask (in binary) 
equals to the WHD. Further, the number of 1 in a dimension 
of mask represents the WHD of the corresponding dimen-
sion. Assume that cଵ is the number of 00 and 11, and cଶ is 
the number of 10 and 01. As the range of WHD of 11 and 00 
is 3, and that of 01 and 10 is 2, the length of the mask is set to 
be 3 ൈ cଵ ൅ 2 ൈ cଶ, where cଵ ൅ cଶ ൌ ܾ/2. For example, as 
shown in Table II, the changes of the mask 00011011 are 
presented, where the WHD ranges from 0 to 10. 

 
TABLE II 

THE CHANGES OF MASK FOR 8-BIT BINARY CODE 00011011 WHEN 
INCREASING THE WEIGHTED HAMMING DISTANCE. 

           
WHD 

00 01 10 11 number 
of casesone of the cases 

r=0 000 00 00 000 1 
r=1 000 00 00 001 ܥଵ଴ଵ  
r=2 000 01 10 000 ܥଵ଴ଶ  
r=3 011 01 00 000 ܥଵ଴ଷ  

… …… 
r=10 111 11 11 111 1 

2) Transform the mask. When the WHD increases, the 
transformation of mask for NN search is the same as MIH 
except that the length of the mask is different. So, when the 
WHD increases to R, the total number of the cases of mask is 
ଷൈ௖ଵାଶൈୡଶோܥ . In each case, there exist different bit-wise flips 
in mask. We first initialize two variables IN and RN to 0, 
which represent the numbers to be added and subtracted to 
the query, respectively. Note that the two variables have the 
same number of bits as the query, as every two bits of them 
represents the WHD of the corresponding dimension.  

TABLE III 
THE CHANGES OF CORRESPONDING DIMENSION OF IN AND RN WHEN 

BINARY CODE IS 00 OR 11. ‘+’ REPRESENTS THE CHANGE IN IN; ‘-’ 
REPRESENTS THE CHANGE IN RN. 

mask 
value  000 001 010 011 100 101 110 111

00 0 +1 +1 +2 +1 +2 +2 +3
11 0 -1 -1 -2 -1 -2 -2 -3

TABLE IV 
THE CHANGES OF CORRESPONDING DIMENSION OF IN AND RN WHEN 

BINARY CODE IS 01 OR 10. ‘+’ REPRESENTS THE CHANGE IN IN; ‘-’ 
REPRESENTS THE CHANGE IN RN. 

mask 
value  00 01 10 11 

01 0 +1 -1 +2 
10 0 +1 -1 -2 

Table III and Table IV are presented to detail the changes 
of IN and RN， according to different mask and binary codes. 

For 00 (see Table III), only IN can be used, meaning a cer-
tain number can be added to the dimension. While, 11 is just 
on the contrary. As for 01 (see Table IV), the change ranges 
from	െ1	to ൅ 2, which indicates IN can be set as 01 and 10 
or RN can be set as 01 in corresponding dimension. However, 
when the WHD is 1, IN and RN can both be utilized. In this 
case, we use mask to determine which variable to change. It 
requires that when the dimension of mask equals 01, the 
corresponding dimension of IN is set as 01, while RN is set 
as 01 when mask is 10. The dimension of 10 works the same 
way. With the simple approach, it guarantees that each 
transformation of mask corresponds to only one situation, 
and takes into account all the cases at the same time. 

3) Examine the hash buckets. After the previous steps, the 
address of the hash bucket to be examined is 

address ൌ 	query ൅ ܰܫ െ ܴܰ.               (9)   
Subsequent search approaches are consistent with the MIH. 

Here is an example, given the query 01001011, which is 
8-bit code (4-dimension), and the length of the mask is set to 
be 10-bit long. If the expected WHD is 4, the mask should 
contain four bits valued 1. Assume the mask is 0010110100, 
for the first dimension (from right to left), the corresponding 
dimension of mask does not contain any 1, so there is no 
change in IN or RN. For the second dimension of the query 
00, the mask (containing 3 bits in this dimension) has two 
bits valued 1, so IN ൌ IN | 00100000. For the third dimen-
sion of the query 10, the corresponding mask has one bit 
valued 1, then 	ܴܰ	= ܴܰ	|	00000100 . For the fourth di-
mension 11 of the query, there is one bit valued 1, so	ܴܰ ൌ
ܴܰ|00000001. As a result, the IN equals to 00100000 and 
RN equals to00000101. Thus, the address of hash bucket to 
be examined is 01100110, which has the WHD of 4 for the 
query. 

This method takes into account all cases of the WHD, and 
each case appears only once. To fit DBQ binary codes, it 
considers different combinations of mask and binary code to 
get the address of hash buckets to be examined. As revealed 
in the experiment results, DBIH remarkably increases the 
search efficiency compared to the linear search. 
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Fig. 4. Asymmetric distance. 

D. Weighted Distance Measurement 
Binary codes are storage efficient and fast to compute. 

Millions of binary codes can be compared to a query in less 
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On the other hand, weighted hamming distance has more 
distinguishing ability. When one-bit quantization is used, 
the hamming distance of each two-bit code has three possi-
ble values (0, 1 and 2). But it has four possibilities (0, 1, 2 
and 3) when using DBQ. Thus, weighted hamming distance 
has a wider range than original method. For example, as-
sume the number of bit is 64, and then the range of hamming 
distance is 0 to 64. However, the range of weighted ham-
ming distance is 0 to 128, which is twice of the former. As a 
consequence, DBQ obtains stronger discrimination than 
traditional binary embedding methods. 
 Double-bit quantization VS Manhattan hashing [48] 

To verify the effectiveness of DBQ, Manhattan hashing 
(MH) is compared. The basic idea of MH is to encode each 
projected dimension with multiple bits of natural binary 
code, based on which the Manhattan distance between 
points in the hamming space is calculated. In order to 

maintain consistency of the experiments, the number of bit 
per dimension is set to be 2. The dataset we use is BIGANN 
SIFT 1M. The experiment has 1000 queries, in which pre-
cision and recall are adopted as metrics. As shown in table 
VIII, DBQ outperforms MH in most of the cases expect 
when the hashing method is LSH due to the randomness. 

Note that NPQ has better performance than MH[50]. To 
our knowledge, DBQ has the best accuracy on the three 
datasets at present. For the reason of paper length, wo do not 
compare our method with NPQ. 
2) Double-bit Index Hashing 

Each experiment involves 10000 queries, and we report 
the average running time. When the number of bits is 64, we 
divide the binary codes into 4 segments. The 128-bit long 
binary codes are divided to 8 segments. The results illustrate 
that DBIH is remarkably faster compared to the linear scan. 
Note that the linear scan speed relies heavily on
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Fig. 8. Influence to precision of the weighted distance measurement on the BIGANN dataset using 128-d sift descriptors through double-bit quantization and 
different binary embedding methods, including ITQ, RR, PCA, LSH and SH. From left to right: 32-bit, 64-bit, 128-bit and 256-bit codes. DB represents the 
double-bit quantization and DBWD means the double-bit quantization with weighted distance measurement. 
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Fig. 9. Influence to precision of the weighted distance measurement on the CalTeach101 dataset using 320-d gist descriptors through double-bit quantization 
and different binary embedding methods, including ITQ, RR, PCA, LSH and SH. From left to right: 64-bit, 128-bit, 256-bit and 320-bit codes. DB represents 
the double-bit quantization and DBWD means the double-bit quantization with weighted distance measurement. 
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Fig. 10. Influence to precision of the weighted distance measurement on the BIGANN dataset using 960-d gist descriptors through double-bit quantization and 
different binary embedding methods, including ITQ, RR, LSH and SH. From left to right: 64-bit, 128-bit, 256-bit and 512-bit codes. DB represents the dou-
ble-bit quantization and DBWD means the double-bit quantization with weighted distance measurement. 

the memory cache. If there is less cache, linear scan will be 
much slower [32].  

DBIH only needs small number of hash buckets to be ex-
amined. Fig.5 (a) displays the average search radius required 
for1000 queries on a dataset of 10଼ SIFT descriptors. As we 

can see, the search radiuses are concentrated in the range of 2 to 
4. Fig.5 (b) shows the relationship between the number of 
examined hash buckets and the hamming distance on the same 
dataset. For linear scan, each signature is equivalent to one hash 
bucket. So it elaborates that DBIH requires a much smaller 


